This document provides the framework for engineers to design devices, work stations, and interfaces that allow multiple types and brands of point-of-care devices to communicate bidirectionally with access points, data managers, and laboratory information systems from a variety of vendors.

A standard for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Administrative Procedures.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute document POCT01-A2, *Point-of-Care Connectivity; Approved Standard—Second Edition* was developed for those engaged in the manufacture of point-of-care diagnostic devices, as well as the hardware and software used to connect the devices to various information systems in healthcare facilities. This document incorporates the work product of the Connectivity Industry Consortium, an organization that developed specifications for point-of-care device and information system communication interoperability. It provides the basis for multivendor, seamless interoperability between point-of-care devices, data managers, and clinical results management systems.

Copyright ©2006 Clinical and Laboratory Standards Institute. Except as stated below, any reproduction of content from a CLSI copyrighted standard, guideline, companion product, or other material requires express written consent from CLSI. All rights reserved. Interested parties may send permission requests to permissions@clsi.org.

CLSI hereby grants permission to each individual member or purchaser to make a single reproduction of this publication for use in its laboratory procedure manual at a single site. To request permission to use this publication in any other manner, e-mail permissions@clsi.org.

Suggested Citation

Proposed Standard
May 2001

Approved Standard
December 2001

Approved Standard—Second Edition
June 2006

ISBN 1-56238-616-6
ISSN 0273-3099
Contents

Abstract .. i
Committee Membership .. iii
Foreword .. ix
1 Scope .. 1
2 Introduction .. 1
3 Definitions ... 2
4 Specifications ... 4
 4.1 Description of Connectivity System Components .. 5
 4.2 The Interfaces ... 6
References ... 15

Figures

Figure 1. Cooperative Evolution of Point-of-Care Standards ... 2
Figure 2. The Two Interfaces .. 5
Figure 3. Device Interface Layers ... 7
Figure 4. Lower-Layer Networking Evolution ... 8
Figure 5. Device Messaging Layer Data Topics ... 8
Figure 6. Device Messaging Layer ‘Script’ .. 10
Figure 7. Example Glucose Test Results Message ... 11
Figure 8. Example Access Point Deployment Scenario .. 12
Figure 9. Observation Reporting Interface ... 13
Figure 10. Sample Observation Reporting Interface Message .. 14
Contents—Appendixes

Appendix A. Device and Access Point (DAP) Interface Specification

1. Scope and Introduction .. 25
2. Definitions ... 25
3. Abbreviations ... 27
4. Overview of POC Device Networking (Informative) .. 28
5. Overview of IrDA and ISO/IEEE 11073-30200 (Informative) ... 30
6. Requirements for a ‘POCT01-compatible’ Device (Normative) ... 36
7. Requirements for a ‘POCT01-compatible’ Access Point (Normative) ... 38
8. Networked Access Points (Normative if Implemented) .. 41
9. Remote Modem Access (Informative) .. 47
10. POC Devices With Direct Network Connections (Informative) ... 48
11. Data Security (Informative) .. 49
12. RF Wireless Networking Technologies (Informative) .. 50
13. References ... 53

Appendix B. Device Messaging Layer (DML) Specification

1. Scope and Introduction ... 63
2. Bidirectional Communication ... 66
3. General Messaging Issues ... 71
4. Messaging Profile ... 76
5. Information Model ... 91
6. Messaging Model ... 110
7. Extending the Device Messaging Layer .. 126
8. Annex A. Device Messaging Layer Data Types (Normative) ... 128
10. Annex C. ‘SET-TIME’ Time Stamp and Time Zone Information ... 139
11. Annex D. Example Messages (Informative) ... 144
Contents—Appendixes (Continued)

12 Annex E. POCT01 Messaging DTDs (Normative) ... 171

Appendix C. Observation Reporting Interface (ORI) Specification

1 Scope and Introduction .. 203
2 Use Case Descriptions ... 203
3 Message Profile .. 205
4 HL7 Message Definition ... 208
5 Sample Messages ... 223

Appendix D. Point-of-Care Requirements

1 Requirements .. 257

Appendix E. Connectivity Architecture

1 Architecture .. 275
2 Principles .. 275
3 Approach ... 277
4 Model .. 278

Appendix F. Vendor Codes

1 Vendor Codes ... 283

Summary of Comments and Subcommittee Responses

285

The Quality System Approach

288

Related CLSI/NCCLS Publications

289
Foreword

Over the last decade, advances in microfluidic and other miniaturization technologies have enabled a new class of diagnostic device. This new device class—point-of-care diagnostic—supports a wide diversity of diagnostic testing directly at the point of care. Tests that had been previously limited to the domain of central laboratory analyzers are now available in a variety of care settings. Sophisticated tests are possible at the hospital bedside, during patient encounters in primary- and secondary-care clinics, and even in the home. This new point-of-care diagnostic device class offers the advantages of fast turnaround time for test results and quite possibly cost reduction for some types of tests.

In general, from a regulatory perspective, a diagnostic test is not differentiated based on where the test is performed. Someone in the institution must be able to show that the test was performed in compliance with the policies of an overall diagnostic testing quality system for the institution. It is thus incumbent upon point-of-care diagnostic device vendors to offer mechanisms by which their devices may be integrated into an institution’s diagnostic information management system. It is this requirement for integration that drives the need for standardization.

To date, point-of-care diagnostic vendors and partners have faced this integration problem individually and have derived unique solutions. Any institution embarking on incorporating multivendor point-of-care diagnostic devices into their diagnostic testing facilities has had to face the equipment and management costs of multiple integration solutions. In fact, the cost and disjointedness of multivendor point-of-care diagnostic integration is seen as a significant barrier to the adoption of this new and exciting class of diagnostic device.

For the purposes of this specification, point-of-care testing is defined as all testing conducted near the site of patient care. This encompasses many different environments, including hospital-based testing, near-patient testing, physician’s-office testing, and patient self-testing. A point-of-care connectivity specification must be applicable to all of these settings.

In February 2000, 49 healthcare institutions, point-of-care diagnostic vendors, diagnostic test system vendors, and system integrators formed the Connectivity Industry Consortium (CIC) to address this point-of-care diagnostic integration problem. The CIC Board of Directors created the following statement to guide the CIC work teams:

“The vision of the CIC is to expeditiously develop, pilot, and transfer the foundation for a set of seamless ‘plug-and-play’ POC communication standards ensuring fulfillment of the critical user requirements of bidirectionality, device connection commonality, commercial software interoperability, security, and QC / regulatory compliance.”

The result is a set of standards that will become the foundation for POC connectivity across the healthcare continuum. To meet this vision, the resulting standards are self-sustaining and utilize practical, cost-effective, user-focused solutions. The desired outcome of this vision is broad-based vendor and provider adoption of the CIC standards.4

Sections 1 through 4 of this document introduce and explain the technical aspects of point-of-care connectivity specifications. Appendixes A through C are the specifications for constructing a connectivity system; Appendixes D and E describe the basic concepts CIC employed to develop this standard.

4 The governing principles, guidelines, timeline, and other information about the CIC can be found at the CIC’s website: www.poct.fraunhofer.de/about/index.html. The CIC development process emulated the standards-development processes of ANSI-approved standards organizations.
Foreword (Continued)

Note that the following trade names are included in this document: Palm™, Pocket PC™, and Bluetooth™. It is CLSI policy to avoid using trade names unless the products identified are the only ones available; they serve as an example of the point illustrated in the consensus document; and there is no generic description of the design and functional features of the products. Inclusion of these trade names in no way constitutes endorsement by CLSI. Please include in your comments any information that relates to our adherence to this trade name policy.

Connectivity Industry Consortium Membership

<table>
<thead>
<tr>
<th>CORE VENDORS</th>
<th>CORE PROVIDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott Laboratories</td>
<td>Banner Health System</td>
</tr>
<tr>
<td>Agilent Technologies</td>
<td>Bradford Royal Infirmary</td>
</tr>
<tr>
<td>Bayer Diagnostics</td>
<td>Geisinger Healthcare System</td>
</tr>
<tr>
<td>BD</td>
<td>John Hopkins Medical Institutions</td>
</tr>
<tr>
<td>Instrumentation Laboratory</td>
<td>Kaiser Permanente</td>
</tr>
<tr>
<td>Lifescan/J&J</td>
<td>Mayo Clinic</td>
</tr>
<tr>
<td>Medical Automation Systems</td>
<td>Profil GmbH</td>
</tr>
<tr>
<td>Radiometer Medical</td>
<td>St. Vincent Mercy Medical Center</td>
</tr>
<tr>
<td>Roche Diagnostics</td>
<td>The Mount Sinai Hospital</td>
</tr>
<tr>
<td>Sunquest Information Systems</td>
<td>University of Iowa Healthcare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPORTING VENDORS</th>
<th>INDIVIDUAL PROVIDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abaxis</td>
<td>Maurice Green, PhD</td>
</tr>
<tr>
<td>Avocet Medical</td>
<td>Neil Halpern, MD</td>
</tr>
<tr>
<td>Cerner</td>
<td>Georg Hoffmann</td>
</tr>
<tr>
<td>Clarinet Systems</td>
<td>Colonel Forrest Kneisel</td>
</tr>
<tr>
<td>Control Corporation</td>
<td>Gerald Kost, MD, PhD</td>
</tr>
<tr>
<td>First Medical/Sigma Diagnostics</td>
<td>Petrie Rainey, MD, PhD</td>
</tr>
<tr>
<td>GE Medical Systems Information Technologies</td>
<td></td>
</tr>
<tr>
<td>HemoCue</td>
<td>AACC</td>
</tr>
<tr>
<td>HemoSense</td>
<td>COLA</td>
</tr>
<tr>
<td>InterComponentWare</td>
<td>IFCC Scientific Division</td>
</tr>
<tr>
<td>i-STAT Corporation</td>
<td>Medical Devices Agency</td>
</tr>
<tr>
<td>International Technidyne Corporation (ITC)</td>
<td></td>
</tr>
<tr>
<td>Lantronix</td>
<td></td>
</tr>
<tr>
<td>Medtronic</td>
<td></td>
</tr>
<tr>
<td>Motorola</td>
<td></td>
</tr>
<tr>
<td>Orasure Technologies, Inc.</td>
<td></td>
</tr>
<tr>
<td>Pharmacia & Upjohn</td>
<td></td>
</tr>
<tr>
<td>SMS/Siemens</td>
<td></td>
</tr>
<tr>
<td>TELCOR Inc</td>
<td></td>
</tr>
</tbody>
</table>
Foreword (Continued)

The CIC worked within a “fast-track” model and developed the point-of-care diagnostic integration specification within its planned 12- to 15-month lifetime. The CIC organization then handed the specification to CLSI (www.CLSI.org), Health Level 7 (www.hl7.org), and IEEE (www.ieee.org) organizations for subsequent maintenance and extension.

This document, then, represents the work product of the Connectivity Industry Consortium (CIC).

Since the initial publishing of the CLSI POCT1-A standard, communication technologies have evolved, including in the area of radio frequency (RF) networking. The current POCT01 standard makes numerous references to both Bluetooth (802.15.1) and WiFi (802.11) transport interfaces; however, at that time it wasn’t clear whether one technology should be chosen in favor of another. As a result, though RF wireless networking is mentioned in the document, there is no clear direction other than that the standard should be easily extended to include one or more of these transport technologies as long as they provide reliable connection-oriented communications.

This document replaces the first approved edition, POCT1-A, which was published in 2001. Several changes have been made in this edition; chief among them is the addition of a new section related to RF Wireless Networking Technologies (see Section 12 in Appendix A). Another significant change in this document is the conversion of each message prefix from "NCCLS" to "CLSI." This change has been made to reflect the organizational name change that has occurred since the original publication of this standard. In the case of manufacturers with existing or distributed implementations that used the “NCCLS” prefix, the “NCCLS” prefix is a deprecated but valid string, in addition to the preferred “CLSI.”

CLSI also gratefully acknowledges the approval of POCT01 by the Scientific Division of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). The joint efforts of the AACC Point-of-Care Testing Division, CIC, HL7, IEEE, IFCC, and CLSI, along with the many committee participants and experts involved in the development of POCT01, have served to strengthen the value of this standard and its usefulness worldwide.
Point-of-Care Connectivity; Approved Standard—Second Edition

1 Scope

This standard establishes a set of specifications to allow seamless multivendor interoperability and communication between point-of-care devices, data concentrators, and clinical information systems. CLSI document POCT01 provides the framework for engineers to design devices, workstations, and interfaces that allow multiple types and brands of point-of-care devices to communicate bidirectionally with access points, data concentrators, and laboratory information systems from a variety of vendors.

As an interface standard, this document specifies the common communication interfaces and protocols between systems and devices. It facilitates the transfer of data to support the creation of point-of-care applications, services, and institutional policies. This document does not directly address specific point-of-care application and service level functions, such as device lockout and operator list management. This document specifies protocol, not policy. The interfaces specified support the communication required for engineers to build such application-level functionality. Specifying, building, and providing the applications to support these services are left to customers, device and information system vendors.

The only relationship of this point-of-care standard to the laboratory automation domain is through the use of the HL7 standard. In version 2.4, the HL7 standard was expanded to provide elements essential to laboratory automation, which also improved the HL7 standard for the entire laboratory-testing domain. These additions to HL7, along with four proposed new HL7 message triggers (see Section 4.1 in Appendix C of this CLSI standard), enable the point-of-care community to use HL7 as its electronic data interchange (EDI).

This specification also leverages several communication standards. It specifies the use of a single device transport protocol (IrDA TinyTP) running over two possible physical layers: IrDA-infrared, as specified by the Infrared Data Association (IrDA) and ISO/IEEE 11073-30300; and cable-connected, as specified by the IEEE 1073 lower-layers standard. This specification also utilizes local area networking standards such as IEEE 802.3 and protocols such as TCP/IP in cases where network connectivity is required.

2 Introduction

This document on point-of-care connectivity has been developed by the CLSI Subcommittee on Point-of-Care Connectivity. The core of the standard is a group of three specifications developed by the Connectivity Industry Consortium (CIC). The specifications describe the attributes of an access point; the communication protocols between the device and the access point; and communications between a data manager and clinical information systems. The collaborative effort among providers and manufacturers has produced a set of specifications acceptable to both. The constitution of the subcommittee is a balance among providers; representatives of CLSI, HL7, and IEEE; the professions (CAP); and the government (FDA). The specifications will become standards in IEEE, HL7, and CLSI in parallel.
Figure 1. Cooperative Evolution of Point-of-Care Standards

3 Definitions

Access Point (AP) – a subsystem that consolidates data from one or more point-of-care devices (POCD) onto another communication link; NOTE: Examples of access points include a multiport concentrator or a dedicated single-port access point, typically connected to a local area network (LAN), or an access point that is part of a multifunctional device such as a patient monitor or personal computer.

Clinical Information System (CIS) – any healthcare information system (HIS) responsible for housing clinical information; NOTE: Examples include laboratory information systems (LIS), clinical data repository (CDR), and electronic medical records (EMR).

Connectivity – the ability to reliably transfer test information between a point-of-care testing device and an information system.

Data Manager (DM) – typically, a network server that provides the services of an Observation Reviewer (e.g., POC data storage and forwarding, QA/QC, and other POC instrument and data management functions); NOTE 1: In addition to these services, Data Managers usually provide other applications or services tailored to particular devices or POC user needs (such as regulatory reporting and operator management applications); NOTE 2: Data Manager systems are specific instances of Observation Reviewer services.

Device and Access Point interface (DAP) – specifies the interface between a device and an Access Point or concentrator.

Device Messaging Layer (DML) – the DML describes a complete messaging protocol (message types and message flow) to exchange results and quality information (quality assurance and quality control) between a Device and an Observation Reviewer; NOTE: This protocol may sit on top of any robust, reliable transport, such as the one described by the POCT01 Device and Access Point specification.

Docking Station – a mechanical and electrical interface that supports the use of a POC Device, typically employing legacy mechanical interfaces, connectors, protocols, and power delivery methods.

Electronic Data Interchange (EDI) – a term used in many industries to describe protocols to exchange data between enterprise-class information systems; NOTE 1: The acronym is general (applying to all such exchange protocols and languages); however, in some industries it has come to refer to specific implementations; NOTE 2: In the point-of-care domain, this term is occasionally used to refer to the...
The Quality System Approach

Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system approach in the development of standards and guidelines, which facilitates project management; defines a document structure via a template; and provides a process to identify needed documents. The approach is based on the model presented in the most current edition of CLSI/NCCLS document HS1—A Quality Management System Model for Health Care. The quality management system approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any healthcare service’s path of workflow (i.e., operational aspects that define how a particular product or service is provided). The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The quality system essentials (QSEs) are:

- **Documents & Records**
 - Organization
 - Personnel
 - Equipment
 - Purchasing & Inventory
 - Process Control
 - Information Management
 - Occurrence Management
 - Process Improvement
 - Service & Satisfaction
 - Facilities & Safety

POCT01-A2 addresses the quality system essentials (QSEs) indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI/NCCLS Publications section on the following page.

Path of Workflow

A path of workflow is the description of the necessary steps to deliver the particular product or service that the organization or entity provides. For example, CLSI/NCCLS document GP26—Application of a Quality Management System Model for Laboratory Services defines a clinical laboratory path of workflow which consists of three sequential processes: preexamination, examination, and postexamination. All clinical laboratories follow these processes to deliver the laboratory’s services, namely quality laboratory information.

POCT01-A2 addresses the clinical laboratory path of workflow steps indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI/NCCLS Publications section on the following page.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AST4</td>
<td>AST2</td>
<td>AST2</td>
<td>AST2</td>
<td>GP19</td>
<td>GP19</td>
<td>X</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>AS52</td>
</tr>
<tr>
<td>C30</td>
<td>C30</td>
<td>C30</td>
<td>C30</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td></td>
</tr>
<tr>
<td>GP19</td>
<td>HS2</td>
<td>HS2</td>
<td>HS2</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td></td>
</tr>
<tr>
<td>HS2</td>
<td>HS2</td>
<td>HS2</td>
<td>HS2</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td>GP19</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from CLSI/NCCLS document HS1—A Quality Management System Model for Health Care.

<table>
<thead>
<tr>
<th>Preexamination</th>
<th>Examination</th>
<th>Postexamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination ordering</td>
<td>Sample collection</td>
<td>Sample transport</td>
</tr>
<tr>
<td>AST4</td>
<td>C30</td>
<td>HS2</td>
</tr>
<tr>
<td>AST4</td>
<td>HS2</td>
<td>AST4</td>
</tr>
<tr>
<td>AST4</td>
<td>HS2</td>
<td>X</td>
</tr>
</tbody>
</table>

Adapted from CLSI/NCCLS document HS1—A Quality Management System Model for Health Care.
Related CLSI/NCCLS Publications*

AST2-A Point-of-Care *In Vitro* Diagnostics (IVD) Testing; Approved Guideline (1999). This document contains guidelines to provide users of *in vitro* diagnostic (IVD) devices outside of the clinical laboratory with the guidance necessary to produce reliable results comparable to those obtained within the clinical laboratory.

GP19-A2 Laboratory Instruments and Data Management Systems: Design of Software User Interfaces and End-User Software Systems Validation, Operation, and Monitoring; Approved Guideline—Second Edition (2003). This document identifies important factors that designers and laboratory managers should consider when developing new software-driven systems and selecting software user interfaces. Also included are simple rules to help prepare validation protocols for assessing the functionality and dependability of software.

HS2-A Provider-Performed Microscopy Testing; Approved Guideline (2003). This guideline provides information on specimen collection, test methodologies, procedural steps, reporting of results, and the quality assurance aspects of provider-performed microscopy.

HS3-A Pulse Oximetry; Approved Guideline (2005). Pulse oximetry is a widely used device for the clinical assessment of arterial oxygenation and pulse rate. The clinical applications, quality assessment, and limitations are discussed in this guideline.

* Proposed- and tentative-level documents are being advanced through the CLSI consensus process; therefore, readers should refer to the most recent editions.
Explore the Latest Offerings from CLSI!

As we continue to set the global standard for quality in laboratory testing, we’re adding initiatives to bring even more value to our members and customers.

For more information, visit www.clsi.org today.