This report provides guidance to a laboratory in understanding and managing the different types of quality costs that affect processes, services, and financial well-being.

A CLSI report for global application.
The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Standards Development Policies and Process document.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute document QMS20-R—Understanding the Cost of Quality in the Laboratory; A Report introduces the types of quality costs in laboratory expenditures—prevention, appraisal, internal failure, and external failure—and suggests ways that laboratories can apply this information to continually improve their processes, services, and financial well-being.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org

If you or your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at:

P: 610.688.0100 F: 610.688.0700 E: customerservice@clsi.org W: www.clsi.org
Contents

Abstract ... 1

Committee Membership ... iii

Foreword ... vii

Chapter 1: Introduction ... 1

1.1 Scope ... 2

1.2 Background .. 3

1.3 Terminology ... 3

Chapter 2: The Cost of Quality .. 9

2.1 The Concept of Quality Costs .. 10

2.2 Types of Quality Costs ... 12

2.3 The Effect of Quality Costs on the Laboratory’s Budget 24

2.4 Important Relationships Between Quality and Cost ... 26

2.5 Traditional Approaches to Reducing Failure Costs ... 29

2.6 A Quality Management System Approach to Quality Costs 31

2.7 Overview of Quality-based Costing Using Laboratory Failure Costs 36

2.8 Quality-based Costing Using Laboratory Failure Costs .. 37

2.9 Failure Costs in Quality Reports for Management Review 39

2.10 Ways to Eliminate Failure Costs ... 40

2.11 An Action Plan for Transitioning to a Cost of Quality Culture 44

Chapter 3: Conclusion .. 49

Chapter 4: Supplemental Information ... 53

References ... 54

Additional References .. 56

Appendix A1. A Detailed Listing of Prevention and Appraisal Costs 57

Appendix A2. A Detailed Listing of Internal and External Failure Costs 59
Contents (Continued)

Appendix B1. Example of a Generic Worksheet to Calculate Failure Cost ... 60
Appendix B2. Example of a Calculated Failure Cost for a Recollected Blood Sample 61
Appendix B3. Example of a Calculated Failure Cost for a Failed Instrument Examination 62
Appendix B4. Instructions for Use of the Generic Worksheets to Calculate Failure Cost 63
Appendix C. Example of a Quality Report With Calculated Failure Costs .. 65
The Quality Management System Approach ... 66
Related CLSI Reference Materials ... 68
Foreword

Most laboratories are attentive to the quality of examination results and laboratory services they provide through efforts such as QC of methods, calibration of measuring equipment, and quality assurance measurements of process performance. Yet most nonmanagement laboratory staff is unaware of the quality of the laboratory’s financial status, and believe that staying within budget is sufficient. **Every time work is redone, the cost of laboratory services—therefore, the cost of quality—increases.** Consider the cost to the laboratory and to the organization—and the potential adverse effects on patient care—of corrections needed for unacceptable samples, QC failures, lost reports, and erroneous results. These are costs that would not have been expended if laboratory quality were truly perfect, historically referred to as “the cost of poor quality.”

A QMS alone is not enough to ensure that all laboratory expenditures support quality. Table 1 was introduced in CLSI document QMS01 and presents a hierarchy defining the stages of quality synthesized from the concepts of acknowledged quality experts. CLSI document QMS01 presented this table with the third row, “Quality Management System,” shaded. The topic for this report, however, is one level above QMS, presenting concepts and applications of the “cost of quality.” When a laboratory is committed to quality management and continual improvement, the next logical step up the hierarchy is to understand and apply quality cost concepts.
Table 1. Stages of Quality. The economic aspects of costs that support quality and those resulting from poor quality form the basis for this report.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Activities Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Quality Management</td>
<td>Management approach centered on sustained high quality, by focusing on long-term success through customer satisfaction</td>
</tr>
<tr>
<td>Quality Cost Management</td>
<td>Measurement system for the economic aspects of the "cost of quality"</td>
</tr>
<tr>
<td>Quality Management System</td>
<td>Systematic process-oriented approach to meeting quality objectives</td>
</tr>
<tr>
<td>Quality Assurance</td>
<td>Planned and systematic activities to provide confidence that an organization fulfills requirements for quality</td>
</tr>
<tr>
<td>Quality Control</td>
<td>Operational process control techniques to fulfill quality requirements for regulatory compliance and accreditation</td>
</tr>
</tbody>
</table>

NOTE:

Whether or not the laboratory has implemented a complete QMS, the concepts and applications presented in this document can still be used to identify and promote the costs of quality management and detect and remove the costs of waste and errors.

Although perfect laboratory processes are generally unattainable, laboratories still have a real need for identifying expenses created by rework and errors and comparing them to the expense of preventing those problems. Around the world, the health care economic environment is such that laboratory funds should be spent only on quality activities that bring about good diagnosis and treatment of patients; redoing work that was not done correctly the first time wastes money.

Whether or not the laboratory has implemented a complete QMS, the concepts and applications presented in this document can still be used to identify and promote the costs of quality management and detect and remove the costs of waste and errors.

KEY WORDS

- Appraisal cost
- Cost of poor quality
- Cost of quality
- Failure cost
- Quality cost
- Prevention cost
Chapter 1

Introduction

This report introduces the types of quality costs in laboratory expenditures:

- Prevention
- Appraisal
- Failure
 - Internal failure
 - External failure

It also suggests ways that laboratories can apply this information to continually improve their processes, services, and financial performance.
Understanding the Cost of Quality in the Laboratory; A Report

Introduction

1.1 Scope

The concepts of quality costs are generic; therefore, this technical report is applicable to medical laboratories of any size, complexity or specialty, including point-of-care testing. Other types of laboratories, such as public health, research, food, environmental, and veterinary laboratories, can also use the information in this technical report.

This document presents an initial approach laboratories can take to identify quality costs and remove unnecessary expense from laboratory processes. This report is not meant for laboratories to develop and implement the type of comprehensive quality cost accounting system suggested in the literature for manufacturing and other for-profit industries.1,7

1.2 Background

In the present health care economic environment, laboratories worldwide often have only limited resources to provide their services. Wasting resources has a considerable negative effect on any operating budget and laboratories rarely have a realistic idea of how much of their limited resources are being lost to the “cost of poor quality (COPQ).”

Ample evidence exists in the business and manufacturing sectors that when companies adopt a cost of quality concept, they are successful in reducing failure cost and improving quality for customers.8 Today’s medical laboratories have incoming revenue from charges and reimbursements and outgoing expenses for labor and operations. Laboratories are also businesses; therefore, there is no reason to believe that adopting a cost of quality concept would not also help laboratories reduce waste and improve quality to patients and other customers at a reasonable cost.

Cost of quality concepts are a logical extension of a mature, effective QMS. Wherever they may be in their implementation of a QMS, laboratories will benefit from understanding and applying these concepts in both management and technical operations.
The Quality Management System Approach

Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system approach in the development of standards and guidelines, which facilitates project management; defines a document structure via a template; and provides a process to identify needed documents. The quality management system approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care service’s path of workflow (ie, operational aspects that define how a particular product or service is provided). The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The QSEs are as follows:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Personnel</th>
<th>Process Management</th>
<th>Nonconforming Event Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Focus</td>
<td>Purchasing and Inventory</td>
<td>Documents and Records</td>
<td>Assessments</td>
</tr>
<tr>
<td>Facilities and Safety</td>
<td>Equipment</td>
<td>Information Management</td>
<td>Continual Improvement</td>
</tr>
</tbody>
</table>

QMS20-R addresses the QSE indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section, beginning on page 68.
A path of workflow is the description of the necessary processes to deliver the particular product or service that the organization or entity provides. A laboratory path of workflow consists of the sequential processes: preexamination, examination, and postexamination and their respective sequential subprocesses. All laboratories follow these processes to deliver the laboratory’s services, namely quality laboratory information.

QMS20-R does not address any of the clinical laboratory path of workflow steps. For a description of the document listed in the grid, please refer to the Related CLSI Reference Materials section on the following page.

<table>
<thead>
<tr>
<th>Preexamination</th>
<th>Examination</th>
<th>Postexamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination ordering</td>
<td>Sample collection</td>
<td>Sample transport</td>
</tr>
<tr>
<td>Sample receipt/processing</td>
<td>Examination</td>
<td>Results review and follow-up</td>
</tr>
<tr>
<td>Interpretation</td>
<td>Results reporting and archiving</td>
<td>Sample management</td>
</tr>
</tbody>
</table>

QMS01 QMS01 QMS01 QMS01 QMS01 QMS01 QMS01 QMS01 QMS01
Related CLSI Reference Materials*

QMS01-A4 Quality Management System: A Model for Laboratory Services; Approved Guideline—Fourth Edition (2011). This document provides a model for medical laboratories that will assist with implementation and maintenance of an effective quality management system.

QMS02-A6 Quality Management System: Development and Management of Laboratory Documents; Approved Guideline—Sixth Edition (2013). This document provides guidance on the processes needed for document management, including creating, controlling, changing, and retiring a laboratory’s policy, process, procedure, and form documents in both paper and electronic environments.

QMS03-A3 Training and Competence Assessment; Approved Guideline—Third Edition (2009). This document provides background information and recommended processes for the development of training and competence assessment programs that meet quality and regulatory objectives.

QMS06-A3 Quality Management System: Continual Improvement; Approved Guideline—Third Edition (2011). This guideline considers continual improvement as an ongoing, systematic effort that is an essential component of a quality management system. A continual improvement program may consist of fundamental processes and common supporting elements described in this guideline.

QMS11-A Management of Nonconforming Laboratory Events; Approved Guideline (2007). This guideline provides an outline and the content for developing a program to manage a health care service’s nonconforming events that is based on the principles of quality management and patient safety.

QMS12-A Development and Use of Quality Indicators for Process Improvement and Monitoring of Laboratory Quality; Approved Guideline (2010). This document provides guidance on development of quality indicators and their use in the medical laboratory.

QMS15-A Assessments: Laboratory Internal Audit Program; Approved Guideline (2013). This document provides guidance for how a laboratory can establish an internal audit program to enhance the quality of its services through continual improvement. Whereas an audit program defines the “who,” “what,” “when,” “where,” and “how” of meeting requirements for internal auditing, the audit process describes the details of how to conduct individual laboratory internal audits.

* CLSI documents are continually reviewed and revised through the CLSI consensus process; therefore, readers should refer to the most current editions.
Explore the Latest Offerings from CLSI!

As we continue to set the global standard for quality in laboratory testing, we’re adding initiatives to bring even more value to our members and customers.

Power Forward with this Official Interactive Guide

Fundamentals for implementing a quality management system in the clinical laboratory.

Visit the CLSI U Education Center

Where we provide the convenient and cost-effective education resources that laboratories need to put CLSI standards into practice, including webinars, workshops, and more.

Find Membership Opportunities

See the options that make it even easier for your organization to take full advantage of CLSI benefits and our unique membership value.

Shop Our Online Products

Including eCLIPSE Ultimate Access™, CLSI’s cloud-based, online portal that makes it easy to access our standards and guidelines—anytime, anywhere.

For more information, visit www.clsi.org today.