M62

Performance Standards for Susceptibility Testing of Mycobacteria, *Nocardia* spp., and Other Aerobic Actinomycetes

This document includes updated breakpoint and quality control tables for the Clinical and Laboratory Standards Institute susceptibility testing standard M24.

A CLSI supplement for global application.
Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes

Gail L. Woods, MD
Nancy L. Wengenack, PhD, D(ABMM)
Grace Lin, MS
Barbara A. Brown-Elliott, MS, MT(ASCP)SM
Daniela Maria Cirillo, MD, PhD
Patricia S. Conville, MS, MT(ASCP)
Edward P. Desmond, PhD, D(ABMM)
Scott B. Killian, BS
Nicole M. Parrish, PhD, MHS, D(ABMM)
Richard Pfeltz, PhD
Elvira Richter, PhD
John D. Turnidge, MD, BS, FRACP, FRCPA, FASM

Abstract

Clinical and Laboratory Standards Institute document M62—Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes includes the minimal inhibitory concentrations and quality control ranges developed following the standards described in CLSI document M24. The data in the tables are valid only when the methodology in CLSI document M24 is followed.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, or to request a copy of the catalog, contact us at: Telephone: +1.610.688.0100; Fax: +1.610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Contents

Abstract .. i
Committee Membership .. iii
Overview of Changes ... vii
Abbreviations and Acronyms ... viii
Reference ... ix
Table 1. Broth Microdilution Breakpoints and Interpretive Categories for MTBC Tested in Middlebrook 7H9 Broth Supplemented With OADC Using Commercially Available MIC Plates ... 1
Table 2. Susceptibility Testing of MTBC to Second-Line Drugs Using the Fluorescence-based Commercial Shorter-Incubation Liquid Media System ... 2
Table 3. Antimycobacterial Agents and Breakpoints for Testing MAC... 4
Table 4. Antimycobacterial Agents and Breakpoints for Testing M. kansasii .. 5
Table 5. Antimycobacterial Agents and Breakpoints for Testing Slowly Growing Nontuberculous Mycobacteria Other Than MAC and M. kansasii .. 6
Table 6. Antimycobacterial Agents and Breakpoints for Testing Rapidly Growing Mycobacteria ... 7
Table 7. Antimycobacterial Agents and Breakpoints for Testing Nocardia spp. and Other Aerobic Actinomycetes ... 10
Table 8. Expected Antimicrobial Susceptibility Patterns of the Most Commonly Isolated Nocardia spp. .. 12
Table 9. Expected Results for Routine and Supplemental QC Strains When Testing MTBC by a Culture-based Method .. 13
Table 10. MIC QC Ranges When Testing MTBC Using M. tuberculosis ATCC® 27294 (H37Rv) Tested in Middlebrook 7H9 Medium Supplemented With OADC .. 14
Table 11. QC Ranges for Susceptibility Testing of M. tuberculosis ATCC® 27294 (H37Rv) to Second-Line Drugs Using the Fluorescence-based Commercial Shorter-Incubation Liquid Media System .. 15
Table 12. Broth Microdilution QC Ranges When Testing Slowly Growing Nontuberculous Mycobacteria.. 16
Table 13. Broth Microdilution QC Ranges When Testing Rapidly Growing Mycobacteria 17
Table 14. Broth Microdilution QC Ranges When Testing Nocardia spp. and Other Aerobic Actinomycetes .. 18
The Quality Management System Approach .. 20
Related CLSI Reference Materials ... 21
Overview of Changes

This document incorporates and updates the tabular information from CLSI document M24-A2, published in 2011. Several changes were made in this edition, including:

- **General:**
 - Removed all QC and interpretive information (e.g., critical concentrations, breakpoints, interpretive categories) from CLSI document M24\(^1\) and used the information to create M62, this supplement
 - Removed former Table 6 in M24-A2, Antimycobacterial Agents and Minimal Inhibitory Concentration (MIC) Values Indicating Resistance for Susceptibility Testing of \(M. \text{marinum}\) (Routine Testing Is Not Recommended)

- **Table 1. Broth Microdilution Breakpoints and Interpretive Categories for MTBC Tested in Middlebrook 7H9 Broth Supplemented With OADC Using Commercially Available MIC Plates:**
 - Added new table

- **Table 2. Susceptibility Testing of MTBC to Second-Line Drugs Using the Fluorescence-based Commercial Shorter-Incubation Liquid Media System:**
 - Added new table

- **Table 3. Antimycobacterial Agents and Breakpoints for Testing MAC (Table 4 in M24-A2):**
 - Revised routine and supplemental QC strains recommended for QC testing
 - Reformatted and revised footnotes as general comments
 - Added breakpoints and interpretive categories for amikacin (intravenous and liposomal inhaled)

- **Table 4. Antimycobacterial Agents and Breakpoints for Testing \(M. \text{kansasi}i\) (Table 5 in M24-A2):**
 - Added recommended QC strain information
 - Added breakpoints and interpretive categories for:
 - Minocycline
 - Removed:
 - Ethambutol
 - Isoniazid
 - Streptomycin

- **Table 5. Antimycobacterial Agents and Breakpoints for Testing Slowly Growing Nontuberculous Mycobacteria Other Than MAC and \(M. \text{kansasi}i\):**
 - Added new table

- **Table 6. Antimycobacterial Agents and Breakpoints for Testing Rapidly Growing Mycobacteria (Table 7 in M24-A2):**
 - Revised QC strains for supplemental QC testing
 - Revised and reformatted comments

- **Table 7. Antimycobacterial Agents and Breakpoints for Testing \(Nocardia\) spp. and Other Aerobic Actinomycetes:**
 - Added new table
- Table 8. Expected Antimicrobial Susceptibility Patterns of the Most Commonly Isolated Nocardia spp.:
 - Added new table

- Table 9. Expected Results for Routine and Supplemental QC Strains When Testing MTBC by a Culture-based Method:
 - Added new table

- Table 10. MIC QC Ranges When Testing MTBC Using M. tuberculosis ATCC® 27294 (H37Rv) Tested in Middlebrook 7H9 Media Supplemented With OADC:
 - Added new table

- Table 11. QC Ranges for Susceptibility Testing of M. tuberculosis ATCC® 27294 (H37Rv) to Second-Line Drugs Using the Fluorescence-based Commercial Shorter-Incubation Liquid Media System:
 - Added new table

- Table 12. Broth Microdilution QC Ranges When Testing Slowly Growing Nontuberculous Mycobacteria:
 - Added new table

- Table 13. Broth Microdilution QC Ranges When Testing Rapidly Growing Mycobacteria (Table 8 in M24-A2):
 - Added QC ranges for tigecycline

- Table 14. Broth Microdilution QC Ranges When Testing Nocardia spp. and Other Aerobic Actinomycetes:
 - Added new table

Key Words
Aerobic actinomycetes, antimicrobial susceptibility testing, antimycobacterial drugs, antituberculous drugs, Mycobacterium tuberculosis complex, Nocardia spp., nontuberculous mycobacteria

Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC®<sup>a</sup></td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>I</td>
<td>intermediate</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>MAC</td>
<td>Mycobacterium avium complex</td>
</tr>
<tr>
<td>MIC</td>
<td>minimal inhibitory concentration</td>
</tr>
<tr>
<td>MTBC</td>
<td>Mycobacterium tuberculosis complex</td>
</tr>
<tr>
<td>OADC</td>
<td>oleic acid–albumin–dextrose–catalase</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>R</td>
<td>resistant</td>
</tr>
<tr>
<td>S</td>
<td>susceptible</td>
</tr>
<tr>
<td>V</td>
<td>variable</td>
</tr>
</tbody>
</table>

^a ATCC® is a registered trademark of the American Type Culture Collection.
Table 1. Broth Microdilution Breakpoints and Interpretive Categories for MTBC Tested in Middlebrook 7H9 Broth Supplemented With OADC Using Commercially Available MIC Plates1-3

QC recommendations (see Table 10 for acceptable QC ranges):

Routine QC strain:
- \textit{M. tuberculosis} ATCC* 27294 (H37Rv)

<table>
<thead>
<tr>
<th>Antimicrobial Agent</th>
<th>Breakpoints, µg/mL</th>
<th>S</th>
<th>Inconclusive3</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethambutol</td>
<td>≤ 2</td>
<td>41</td>
<td>≥ 8</td>
<td></td>
</tr>
<tr>
<td>Isoniazid</td>
<td>≤ 0.12</td>
<td>–</td>
<td>≥ 0.25</td>
<td></td>
</tr>
<tr>
<td>Rifampin</td>
<td>≤ 1</td>
<td>–</td>
<td>≥ 2</td>
<td></td>
</tr>
</tbody>
</table>

* ATCC® is a registered trademark of the American Type Culture Collection.

† This antimycobacterial susceptibility testing system is not regulatory organization cleared/approved.

‡ Inconclusive MIC for ethambutol. An MIC of 4 µg/mL obtained by broth microdilution using commercially available plates does not correlate with either a susceptible or resistant result in commercial automated, short-incubation broth systems, and there are no clinical data correlating such a result with ethambutol treatment response. \textbf{NOTE:} Repeat testing may determine whether the isolate in question is susceptible or resistant.

Abbreviations: ATCC®, American Type Culture Collection; MIC, minimal inhibitory concentration; MTBC, \textit{Mycobacterium tuberculosis} complex; OADC, oleic acid–albumin–dextrose–catalase; QC, quality control; R, resistant; S, susceptible.

References for Table 1

Table 2. Susceptibility Testing of MTBC to Second-Line Drugs Using the Fluorescence-based Commercial Shorter-Incubation Liquid Media System

<table>
<thead>
<tr>
<th>Antituberculous Agent</th>
<th>Critical Concentration, µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin†</td>
<td>1.0†,3,§</td>
</tr>
<tr>
<td>Capreomycin</td>
<td>2.5†,3</td>
</tr>
<tr>
<td>Ethionamide</td>
<td>5.0†,3,4</td>
</tr>
<tr>
<td>Kanamycin‡</td>
<td>2.5†</td>
</tr>
<tr>
<td>Levofoxacin¶</td>
<td>1.5‡,5,8</td>
</tr>
<tr>
<td>Linezolid</td>
<td>1.0†</td>
</tr>
<tr>
<td>Moxifloxacin**</td>
<td>0.25‡,5,8</td>
</tr>
<tr>
<td>p-Aminosalicylic acid</td>
<td>4.0†</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>0.5†,8</td>
</tr>
</tbody>
</table>

* ATCC® is a registered trademark of the American Type Culture Collection.
† Most concentrations listed are based on multicenter studies. The systems are not regulatory organization cleared for testing second-line antituberculous drugs.
‡ Amikacin and kanamycin are aminoglycosides, but kanamycin resistance may not indicate amikacin resistance. It may be desirable to test both aminoglycosides. **NOTE:** As of this document’s publication, kanamycin is not available in the United States.
§ For the following drugs listed in the table, the critical concentrations deviate from the technical report on critical concentrations released by WHO in 2018:
• For levofloxacin, the WHO-recommended critical concentration is 1.0 µg/mL.
• For moxifloxacin, the WHO-recommended higher concentration (clinical breakpoint) is 1.0 µg/mL.
• For p-aminosalicylic acid, the WHO has withdrawn the critical concentration.
¶ Two fluoroquinolone drugs are listed. Laboratories should test at least one fluoroquinolone drug. It is not necessary to test both fluoroquinolones listed.
**Moxifloxacin susceptibility at 0.25 µg/mL by the fluorescence-based shorter-incubation liquid media system predicts levofloxacin susceptibility. Because moxifloxacin is more potent than levofloxacin and older quinolones, moxifloxacin may have clinical efficacy when it demonstrates resistance at this concentration but susceptibility at a higher concentration. However, clinical data are not available at this time. It may be advisable to implement moxifloxacin reflex testing at 2 µg/mL for quantitative determination of the resistance level. Future clinical studies are warranted to fully investigate moxifloxacin’s clinical efficacy for strains with MIC between 0.5 and 4 µg/mL.

Abbreviations: ATCC®, American Type Culture Collection; MIC, minimal inhibitory concentration; MTBC, Mycobacterium tuberculosis complex; QC, quality control; WHO, World Health Organization.

References for Table 2

QC recommendations (see Table 13 for acceptable QC ranges):

Routine QC strain:
- *M. peregrinum* ATCC®* 700686

Supplemental QC strains:
- *Staphylococcus aureus* ATCC® 29213
- *Pseudomonas aeruginosa* ATCC® 27853 and/or *Enterococcus faecalis* ATCC® 29212 may also be used, if desired.

Table 6. Antimycobacterial Agents and Breakpoints for Testing Rapidly Growing Mycobacteria

<table>
<thead>
<tr>
<th>Antimicrobial Agent</th>
<th>MIC, µg/mL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>I</td>
</tr>
<tr>
<td>Amikacin (IV)</td>
<td>≤16</td>
<td>32</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>≤16</td>
<td>32–64</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>≤1</td>
<td>2</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>≤2</td>
<td>4</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>≤1</td>
<td>2–4</td>
</tr>
</tbody>
</table>

1. *M. abscessus* complex isolates with MICs of ≥64 µg/mL should be retested, or the *rrs* gene for the amikacin mutation may be sequenced. If the repeat result is ≥64 µg/mL, the MIC should be reported with the comment: “The MIC is greater than expected for this species; if the drug is being considered for therapy, the laboratory should be notified so the isolate can be sent to a referral laboratory for confirmation of resistance.”

2. Ciprofloxacin and levofloxacin are interchangeable. Both are less active in vitro than the newer 8-methoxy fluoroquinolones.

3. See CLSI document M244 for guidance regarding incubation period, molecular testing, and interpretation of clarithromycin results for rapidly growing mycobacteria. Clarithromycin is the class representative for the newer macrolides (ie, azithromycin and roxithromycin).
Table 13. Broth Microdilution QC Ranges When Testing Rapidly Growing Mycobacteria

<table>
<thead>
<tr>
<th>Antimicrobial Agent</th>
<th>MIC QC Ranges, µg/mL</th>
<th>ATCC®* 700686† (routine organism)</th>
<th>ATCC® 29213 (supplemental organism)</th>
<th>ATCC® 27853 (supplemental organism)</th>
<th>ATCC® 29212 (supplemental organism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>≤1–4</td>
<td>1–4</td>
<td>1–4</td>
<td>1–4</td>
<td>≤64–256</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>4–32</td>
<td>1–4</td>
<td>–†</td>
<td>–†</td>
<td>–†</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>≤0.12–0.5</td>
<td>0.12–0.5</td>
<td>0.25–1</td>
<td>0.25–2</td>
<td>0.5–2</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>≤0.06–0.5</td>
<td>0.12–0.5</td>
<td>–†</td>
<td>–†</td>
<td>–†</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>0.12–0.5</td>
<td>0.12–0.5</td>
<td>–†</td>
<td>–†</td>
<td>–†</td>
</tr>
<tr>
<td>Imipenem</td>
<td>2–16</td>
<td>0.015–0.06</td>
<td>1–4</td>
<td>0.5–2</td>
<td>1–4</td>
</tr>
<tr>
<td>Linezolid</td>
<td>1–8</td>
<td>1–4</td>
<td>–†</td>
<td>–†</td>
<td>–†</td>
</tr>
<tr>
<td>Meropenem</td>
<td>2–16</td>
<td>0.03–0.12</td>
<td>0.25–1</td>
<td>2–8</td>
<td>1–4</td>
</tr>
<tr>
<td>Minocycline</td>
<td>0.12–0.5</td>
<td>0.06–0.5</td>
<td>–†</td>
<td>–†</td>
<td>1–4</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>≤0.06–0.25</td>
<td>0.016–0.12</td>
<td>1–8</td>
<td>0.06–0.5</td>
<td>0.03–0.12</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>0.03–0.25</td>
<td>0.03–0.25</td>
<td>–†</td>
<td>–†</td>
<td>0.03–0.12</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>2–8</td>
<td>0.12–1</td>
<td>0.25–1</td>
<td>8–32</td>
<td>8–32</td>
</tr>
<tr>
<td>Trimethoprim-</td>
<td>≤0.25/4.8–2/38</td>
<td>≤0.5/0.5</td>
<td>8/152–32/608</td>
<td>≤0.5/9.5</td>
<td></td>
</tr>
<tr>
<td>sulfamethoxazole§</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ATCC® is a registered trademark of the American Type Culture Collection.
† M. peregrinum should be incubated at 30°C ± 2°C.
‡ A dash indicates no studies have been performed by current recommended methods.
§ MIC is indicated by 80% growth inhibition.

Abbreviations: ATCC®, American Type Culture Collection; MIC, minimal inhibitory concentration; QC, quality control.